CONTROLLED WAVE PARTICLE INTERACTION STUDIES IN THE RADIATION BELTS DENNIS PAPADOPOULOS

ACKNOWLEDGE: C.L.CHANG, J.LEBINSKY AT BAE SYSTEMS XI SHAO, B.ELIASSON, S. SHARMA AND G. MILIKH AT UMCP SUPPORT: MURI/ONR AND BRIOCHE/DARPA

UMCP

PRESENTATION TO RESONANCE WORKSHOP SEPTEBMBER, 19,2012 KIEV, UKRAINE

Wave-particle interactions study under controlled wave injection

- Inner RB (1.5<L<2)
- Slot (2<L<3)
- Outer (L>3)

• Use Ionospheric heaters (HF) to inject ULF/ELF/VLF waves in the L-shell that spans the heater.

Ionospheric Heaters HAARP (L≈4.9) Arecibo (L≈1.4) Tromso (L≈5.9) SURA (L≈2.6)

Diagnosed by RBSP ,Resonance, DSX, ePOP Techniques to transform HF to ULF/ELF/VLF frequencies 1.Polar Electrojet Antenna (PEJ) a. Requires an electrojet current in the D/E region (70-90 km)-Restricted to high latitudes

b. Can inject frequencies up to 20 kHz [Whistlers and Shear Alfven Waves (SAW)]

- 2. Ionospheric Current Drive (ICD)
- a. Does not require electrojet b. Restricted to frequencies below 70 Hz [SAW, EMIC, Magneto-Sonic (MS)]

The Plasma Physics of the PEJ

ELF/VLF ground detection and propagation

Moore et al. GRL 2008

HAARP-DEMETER VLF INJECTION

COURTESY STANFORD UNIVERSITY

- ELF/VLF signals observed in LEO (~700 km) at lateral distances of >400-km from HAARP
- Simultaneous measurement of all six components (3*E*, 3*B*) allows estimation of the Poynting vector
- Total ELF/VLF radiated power estimated to be ~10 to 30 Watts in the range ~100 Hz to 800 Hz.

COURTESY STANFORD UNIVERSITY^{3C3 UT 36}

SC4 Ez Ant, 05/11/2003, 06:24:33, L = 7.2051, Mlat = 41.0288, MLT = 19:08, Re = 4.

SAW DEMETER Detection

Frequency .2 Hz

Closest distance 80 km

Detection time 25 sec

Detection distance 150 km

Maximum E 🕅 10 mV/m

1.5 pT on the ground

Ionospheric Current Drive (ICD) Concept

Papadopoulos et al. GRL 2011a,b Eliasson et al., JGR 2012 Step 1: $\Delta J = \frac{B \times \nabla \delta p}{B^2} \exp(i\omega t)$ MS Wave Step 2: E field of MS wave drives Hall current in E-region resulting in secondary antenna resembling PEJ

DOES NOT REQUIRE EJET – CAN BE IMPLEMENTED ANYWHERE AND ANYTIME

Cylindrical Coordinates

Papadopoulos et al. GRL 2011a

MS

SAW

10 Hz

Secondary Antenna Current and Ground Field

PoP Exps: PEJ to ICD Transition

(Gakona) ULF VS 1 kHz Amp. All Times [04/28/2008 21:00:00 - 05/04/2008 09:20:00]

ICD PoP Experiments

- 10/14-10/21 Magnetometer below 10 nT
- 10/14-10/23 55 hours of VLF/ELF/ULF tests
- 6 hours of VLF ground measurements
 –PEJ operational
- 51 hours of low ELF/ULF (12-44 Hz) ground measurements

ELF detection at Distant Sites

- Distance to Gakona
 - Lake Ozette, WA (W)
 - 1300 mi
 - Hawaii (H)
 - 2900 mi
 - Guam (G)
 - 4800 mi
- Detection under quiet Gakona cond.
- No detection during electrojet days Oct. 22-23

Proof of Concept ICD Experiment – Conducted under DARPA/BRIOCHE

Chang-Lebinsky-Milikh-Papadopoulos

N-S B Field (Gakona NI BF4) - UTC 2010-10-30 06:00:00 to 2010-10-30 06:19:30

Low ELF Observed by Demeter Satellite

2010-11-06, 06:15:00-06:34:30 ELF 11 Hz modulation (O-MZ)

Msonic Wave Injection

Inner RB

Implications of ICD to RB and RBR – Potential Arecibo/RBSP Tests

RBSP

ICD - Implications

Mid-latitude Heaters – Arecibo, SURA : Wave Particle Interaction Studies in the inner Belt

ENERGETIC ELECTRON WP INTERACTIONS DUE TO EMIC WAVES

As a result $1/k_z \rightarrow |\Omega_e|/\gamma v_z$ before reaching resonance $(1/k_z \rightarrow 0)$

Outer Belts

Summers et al., 1998, 2000, 2003

HELIUM BRANCH

Arecibo Heater Experiments

Back of the envelope schematic of experiments with approximate amplitudes to be verified in the experiments. Better calculations to be included in the proposal are in progress. In all experiments the ionospheric state will be measured by the ISRs. The field amplitudes will be recorded on the ground in Arecibo and conjugate (AGCP)

Frequency Selection for Protons

Dip Equator

Eliasson et al., 2012

Physics Studies HAARP/Resonance

- Wave-particle interactions in the Radiation Belts – Whistler range
 - Artificially Stimulated Emissions (ASE)
- ULF MHD Study
 - SA ,EMIC and MS wave injection in space. Interactions with trapped electron and ions
 - Excitation of the Ionospheric Alfven Resonator (IAR)
 - SA wave (Pc1) triggering

Controlled VLF Wave Injection Artificially Stimulated Emissions (ASE)

Siple Station Antartica – (Stanford – NSF) Helliwell (1973-1987):

L=4.2, 1.5 MW, 42 km length antenna on 2 km thick ice sheet, Inject 3-6 kHz –

Very difficult and inefficient to inject ELF/VLF with ground

Triggered Emissions

ASE – HAARP Tests

Pulse near 1.7 kHz does not; ramps have echoes with no emissions

15 dB/s Amplification & Triggered Emissions

Only the pulse at 1100 Hz is amplified

BAE SYSTEMS

Pc1 Triggered Emissions ?

Spectrum before HAARP ULF Start Experiment – Ambient Noise

Spectrum after HAARP ULF Start Noise Increase by more than 10-20 dB between .7-10 Hz

ULF at Gakona – Power Spectral Density (PSD)

- Frequency spectrum in a moving time window
- Clear Schumann
 resonances at 8, 14, .. Hz
- Signals emerge as freq.
 peaks in sync with HAARP
 ULF operation
- Greatly varying background below 1 Hz

IAR Excitation by the HAARP

LAPD Experiment

Physics hypothesis: Loss cone drives whistlers leading to steady state loss (KP)- Injection of SAW couples (?) to whistlers giving enhanced spiky loss

Arecibo (L≈1.4)

Tromso (L≈5.9)

SURA (L≈2.6)

The Future

• Use Ionospheric heaters (HF) to inject ULF/ELF/VLF waves in the L-shell that spans the heater and diagnose it with RBSP, Resonance, DSX, ePOP

Magneto-synchronous

RBSP

Launch May 18, 2012 2 probes, <1500 kg for both 10° inclination, 9 hr orbits ~500 km x 30,600 km

RESONANCE (Russia) Launch ~2012-14, 4-spacecraft Orbit:1800x30,000km, ~63° incl.

DSX (AFRL) Launch ~2012 MEO, wave/ particle

RESONANCE (Russia)

Launch ~2012-14, 4-spacecraft Orbit:1800x30,000km, ~63° incl.

- Launch May 18, 2012
- 2 probes, <1500 kg for both
- \sim 10° inclination, 9 hr orbits
- ~ 500 km x 30,600 km

DSX (AFRL)

Launch ~2012 MEO, wave/particle

ORBITALS (CSA) Launch 2012-2013 Orbit(?) ~L=2 to L=6

THEMIS (NASA) Launch Feb 17, 2007 5 identical probes (3)

Inner Proton Belt – Accessible from Arecibo

Typical inner belt proton lifetimes:

10 MeV – decades 50 MeV – century No wave activity at SAW and EMIC branches

Inner Proton Belt – Accessible from Arecibo

Typical inner belt proton lifetimes:

10 MeV – decades 50 MeV – century No wave activity at SAW and EMIC branches

Growth & Saturation

Amplitude Effect on Growth

COHERENT GROWTH 20-30 dB

• THRESHOLD

- SIGNAL SATURATION
- TRIGGERED EMISSIONS –

risers, fallers, hooks

• ENTRAINMENT

TRANSITION TO OSCILLATOR BEHAVIOR

Next Step - Active SAW Probing of Inner RB Using the Arecibo Heater

Focus on SAW for protons and EMIC for electrons

Active Probing of Inner RB Using the Arecibo Heater Using ICD – Triggered EMIC

Focus on SAW for protons and EMIC for electrons

V V	
Proton	Resonance
Energy	Frequencies
30 MeV	6-16 Hz
50 MeV	5-15 Hz
100 MeV	3.5-9.5Hz

HELIUM BRANCH